2
0
forked from Ivasoft/DSView
Files
DSView/DSView/pv/data/spectrumstack.cpp
2021-11-24 17:04:12 +08:00

247 lines
6.0 KiB
C++
Executable File

/*
* This file is part of the PulseView project.
*
* Copyright (C) 2016 DreamSourceLab <support@dreamsourcelab.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "spectrumstack.h"
#include "dso.h"
#include "dsosnapshot.h"
#include "../sigsession.h"
#include "../view/dsosignal.h"
#include <math.h>
#define PI 3.1415
using namespace boost;
using namespace std;
namespace pv {
namespace data {
const QString SpectrumStack::windows_support[5] = {
QT_TR_NOOP("Rectangle"),
QT_TR_NOOP("Hann"),
QT_TR_NOOP("Hamming"),
QT_TR_NOOP("Blackman"),
QT_TR_NOOP("Flat_top")
};
const uint64_t SpectrumStack::length_support[5] = {
1024,
2048,
4096,
8192,
16384,
};
SpectrumStack::SpectrumStack(pv::SigSession *session, int index) :
_session(session),
_index(index),
_dc_ignore(true),
_sample_interval(1),
_spectrum_state(Init),
_fft_plan(NULL)
{
}
SpectrumStack::~SpectrumStack()
{
_xn.clear();
_xk.clear();
_power_spectrum.clear();
if (_fft_plan)
fftw_destroy_plan(_fft_plan);
}
void SpectrumStack::clear()
{
}
void SpectrumStack::init()
{
}
int SpectrumStack::get_index()
{
return _index;
}
uint64_t SpectrumStack::get_sample_num()
{
return _sample_num;
}
void SpectrumStack::set_sample_num(uint64_t num)
{
_sample_num = num;
_xn.resize(_sample_num);
_xk.resize(_sample_num);
_power_spectrum.resize(_sample_num/2+1);
_fft_plan = fftw_plan_r2r_1d(_sample_num, _xn.data(), _xk.data(),
FFTW_R2HC, FFTW_ESTIMATE);
}
int SpectrumStack::get_windows_index()
{
return _windows_index;
}
void SpectrumStack::set_windows_index(int index)
{
_windows_index = index;
}
bool SpectrumStack::dc_ignored()
{
return _dc_ignore;
}
void SpectrumStack::set_dc_ignore(bool ignore)
{
_dc_ignore = ignore;
}
int SpectrumStack::get_sample_interval()
{
return _sample_interval;
}
void SpectrumStack::set_sample_interval(int interval)
{
_sample_interval = interval;
}
const std::vector<QString> SpectrumStack::get_windows_support()
{
std::vector<QString> windows;
for (size_t i = 0; i < sizeof(windows_support)/sizeof(windows_support[0]); i++)
{
windows.push_back(windows_support[i]);
}
return windows;
}
const std::vector<uint64_t> SpectrumStack::get_length_support()
{
std::vector<uint64_t> length;
for (size_t i = 0; i < sizeof(length_support)/sizeof(length_support[0]); i++)
{
length.push_back(length_support[i]);
}
return length;
}
const std::vector<double> SpectrumStack::get_fft_spectrum()
{
std::vector<double> empty;
if (_spectrum_state == Stopped)
return _power_spectrum;
else
return empty;
}
double SpectrumStack::get_fft_spectrum(uint64_t index)
{
double ret = -1;
if (_spectrum_state == Stopped && index < _power_spectrum.size())
ret = _power_spectrum[index];
return ret;
}
void SpectrumStack::calc_fft()
{
_spectrum_state = Running;
// Get the dso data
pv::data::Dso *data = NULL;
pv::view::DsoSignal *dsoSig = NULL;
for(auto &s : _session->get_signals()) {
if ((dsoSig = dynamic_cast<view::DsoSignal*>(s))) {
if (dsoSig->get_index() == _index && dsoSig->enabled()) {
data = dsoSig->dso_data();
break;
}
}
}
if (!data)
return;
// Check we have a snapshot of data
const auto &snapshots = data->get_snapshots();
if (snapshots.empty())
return;
_snapshot = snapshots.front();
if (_snapshot->get_sample_count() < _sample_num*_sample_interval)
return;
// Get the samplerate
_samplerate = data->samplerate();
if (_samplerate == 0.0)
_samplerate = 1.0;
// prepare _xn data
const int offset = dsoSig->get_hw_offset();
const double vscale = dsoSig->get_vDialValue() * dsoSig->get_factor() * DS_CONF_DSO_VDIVS / (1000*255.0);
const uint16_t step = _snapshot->get_channel_num() * _sample_interval;
const uint8_t *const samples = _snapshot->get_samples(0, _sample_num*_sample_interval-1, _index);
double wsum = 0;
for (unsigned int i = 0; i < _sample_num; i++) {
double w = window(i, _windows_index);
_xn[i] = (samples[i*step] - offset) * vscale * w;
wsum += w;
}
// fft
fftw_execute(_fft_plan);
// calculate power spectrum
_power_spectrum[0] = abs(_xk[0])/wsum; /* DC component */
for (unsigned int k = 1; k < (_sample_num + 1) / 2; ++k) /* (k < N/2 rounded up) */
_power_spectrum[k] = sqrt((_xk[k]*_xk[k] + _xk[_sample_num-k]*_xk[_sample_num-k]) * 2) / wsum;
if (_sample_num % 2 == 0) /* N is even */
_power_spectrum[_sample_num/2] = abs(_xk[_sample_num/2])/wsum; /* Nyquist freq. */
_spectrum_state = Stopped;
}
double SpectrumStack::window(uint64_t i, int type)
{
const double n_m_1 = _sample_num-1;
switch(type) {
case 1: // Hann window
return 0.5*(1-cos(2*PI*i/n_m_1));
case 2: // Hamming window
return 0.54-0.46*cos(2*PI*i/n_m_1);
case 3: // Blackman window
return 0.42659-0.49656*cos(2*PI*i/n_m_1) + 0.076849*cos(4*PI*i/n_m_1);
case 4: // Flat_top window
return 1-1.93*cos(2*PI*i/n_m_1)+1.29*cos(4*PI*i/n_m_1)-
0.388*cos(6*PI*i/n_m_1)+0.028*cos(8*PI*i/n_m_1);
default:
return 1;
}
}
} // namespace data
} // namespace pv