2
0
forked from Ivasoft/DSView
Files
DSView/DSView/pv/data/logicsnapshot.cpp
2015-04-19 00:52:20 +08:00

574 lines
17 KiB
C++

/*
* This file is part of the DSView project.
* DSView is based on PulseView.
*
* Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
* Copyright (C) 2013 DreamSourceLab <dreamsourcelab@dreamsourcelab.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <extdef.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <boost/foreach.hpp>
#include "logicsnapshot.h"
using namespace boost;
using namespace std;
namespace pv {
namespace data {
const int LogicSnapshot::MipMapScalePower = 4;
const int LogicSnapshot::MipMapScaleFactor = 1 << MipMapScalePower;
const float LogicSnapshot::LogMipMapScaleFactor = logf(MipMapScaleFactor);
const uint64_t LogicSnapshot::MipMapDataUnit = 64*1024; // bytes
LogicSnapshot::LogicSnapshot(const sr_datafeed_logic &logic, uint64_t _total_sample_len, unsigned int channel_num) :
Snapshot(logic.unitsize, _total_sample_len, channel_num),
_last_append_sample(0)
{
boost::lock_guard<boost::recursive_mutex> lock(_mutex);
memset(_mip_map, 0, sizeof(_mip_map));
if (init(_total_sample_len * channel_num) == SR_OK)
append_payload(logic);
}
LogicSnapshot::~LogicSnapshot()
{
boost::lock_guard<boost::recursive_mutex> lock(_mutex);
BOOST_FOREACH(MipMapLevel &l, _mip_map)
free(l.data);
}
void LogicSnapshot::append_payload(
const sr_datafeed_logic &logic)
{
assert(_unit_size == logic.unitsize);
assert((logic.length % _unit_size) == 0);
boost::lock_guard<boost::recursive_mutex> lock(_mutex);
append_data(logic.data, logic.length / _unit_size);
// Generate the first mip-map from the data
append_payload_to_mipmap();
}
void LogicSnapshot::get_samples(uint8_t *const data,
int64_t start_sample, int64_t end_sample) const
{
assert(data);
assert(start_sample >= 0);
assert(start_sample <= (int64_t)_sample_count);
assert(end_sample >= 0);
assert(end_sample <= (int64_t)_sample_count);
assert(start_sample <= end_sample);
//lock_guard<recursive_mutex> lock(_mutex);
const size_t size = (end_sample - start_sample) * _unit_size;
memcpy(data, (const uint8_t*)_data + start_sample * _unit_size, size);
}
void LogicSnapshot::reallocate_mipmap_level(MipMapLevel &m)
{
const uint64_t new_data_length = ((m.length + MipMapDataUnit - 1) /
MipMapDataUnit) * MipMapDataUnit;
if (new_data_length > m.data_length)
{
m.data_length = new_data_length;
// Padding is added to allow for the uint64_t write word
m.data = realloc(m.data, new_data_length * _unit_size +
sizeof(uint64_t));
}
}
void LogicSnapshot::append_payload_to_mipmap()
{
MipMapLevel &m0 = _mip_map[0];
uint64_t prev_length;
const uint8_t *src_ptr;
uint8_t *dest_ptr;
uint64_t accumulator;
unsigned int diff_counter;
// Expand the data buffer to fit the new samples
prev_length = m0.length;
m0.length = _sample_count / MipMapScaleFactor;
// Break off if there are no new samples to compute
if (m0.length == prev_length)
return;
reallocate_mipmap_level(m0);
dest_ptr = (uint8_t*)m0.data + prev_length * _unit_size;
// Iterate through the samples to populate the first level mipmap
const uint8_t *const end_src_ptr = (uint8_t*)_data +
m0.length * _unit_size * MipMapScaleFactor;
for (src_ptr = (uint8_t*)_data +
prev_length * _unit_size * MipMapScaleFactor;
src_ptr < end_src_ptr;)
{
// Accumulate transitions which have occurred in this sample
accumulator = 0;
diff_counter = MipMapScaleFactor;
while (diff_counter-- > 0)
{
const uint64_t sample = *(uint64_t*)src_ptr;
accumulator |= _last_append_sample ^ sample;
_last_append_sample = sample;
src_ptr += _unit_size;
}
*(uint64_t*)dest_ptr = accumulator;
dest_ptr += _unit_size;
}
// Compute higher level mipmaps
for (unsigned int level = 1; level < ScaleStepCount; level++)
{
MipMapLevel &m = _mip_map[level];
const MipMapLevel &ml = _mip_map[level-1];
// Expand the data buffer to fit the new samples
prev_length = m.length;
m.length = ml.length / MipMapScaleFactor;
// Break off if there are no more samples to computed
if (m.length == prev_length)
break;
reallocate_mipmap_level(m);
// Subsample the level lower level
src_ptr = (uint8_t*)ml.data +
_unit_size * prev_length * MipMapScaleFactor;
const uint8_t *const end_dest_ptr =
(uint8_t*)m.data + _unit_size * m.length;
for (dest_ptr = (uint8_t*)m.data +
_unit_size * prev_length;
dest_ptr < end_dest_ptr;
dest_ptr += _unit_size)
{
accumulator = 0;
diff_counter = MipMapScaleFactor;
while (diff_counter-- > 0)
{
accumulator |= *(uint64_t*)src_ptr;
src_ptr += _unit_size;
}
*(uint64_t*)dest_ptr = accumulator;
}
}
}
void LogicSnapshot::get_subsampled_edges(
std::vector<EdgePair> &edges,
uint64_t start, uint64_t end,
float min_length, int sig_index)
{
uint64_t index = start;
unsigned int level;
bool last_sample;
bool fast_forward;
assert(end <= get_sample_count());
assert(start <= end);
assert(min_length > 0);
assert(sig_index >= 0);
assert(sig_index < 64);
if (!_data)
return;
boost::lock_guard<boost::recursive_mutex> lock(_mutex);
const uint64_t block_length = (uint64_t)max(min_length, 1.0f);
const uint64_t sig_mask = 1ULL << sig_index;
if (!edges.empty())
edges.clear();
// Store the initial state
last_sample = (get_sample(start) & sig_mask) != 0;
edges.push_back(pair<int64_t, bool>(index++, last_sample));
while (index + block_length <= end)
{
// search next edge
get_nxt_edge(index, last_sample, end, min_length, sig_index);
//----- Store the edge -----//
// Take the last sample of the quanization block
const int64_t final_index = index + block_length;
if (index + block_length > end)
break;
// Store the final state
const bool final_sample =
(get_sample(final_index - 1) & sig_mask) != 0;
edges.push_back(pair<int64_t, bool>(index, final_sample));
index = final_index;
last_sample = final_sample;
}
// Add the final state
const bool end_sample = ((get_sample(end) & sig_mask) != 0);
if ((end != get_sample_count() - 1) ||
((end == get_sample_count() - 1) && end_sample != last_sample))
edges.push_back(pair<int64_t, bool>(end, end_sample));
if (end == get_sample_count() - 1)
edges.push_back(pair<int64_t, bool>(end + 1, ~last_sample));
}
bool LogicSnapshot::get_nxt_edge(
uint64_t &index, bool last_sample, uint64_t end,
float min_length, int sig_index)
{
unsigned int level;
bool fast_forward;
assert(index > 0);
const unsigned int min_level = max((int)floorf(logf(min_length) /
LogMipMapScaleFactor) - 1, 0);
const uint64_t sig_mask = 1ULL << sig_index;
if (index >= end)
return false;
//----- Continue to search -----//
level = min_level;
// We cannot fast-forward if there is no mip-map data at
// at the minimum level.
fast_forward = (_mip_map[level].data != NULL);
if (min_length < MipMapScaleFactor)
{
// Search individual samples up to the beginning of
// the next first level mip map block
const uint64_t final_index = min(end,
pow2_ceil(index, MipMapScalePower));
for (; index < final_index &&
(index & ~(~0 << MipMapScalePower)) != 0;
index++)
{
const bool sample =
(get_sample(index) & sig_mask) != 0;
// If there was a change we cannot fast forward
if (sample != last_sample) {
fast_forward = false;
break;
}
}
}
else
{
// If resolution is less than a mip map block,
// round up to the beginning of the mip-map block
// for this level of detail
const int min_level_scale_power =
(level + 1) * MipMapScalePower;
index = pow2_ceil(index, min_level_scale_power);
if (index >= end)
return false;
// We can fast forward only if there was no change
const bool sample =
(get_sample(index) & sig_mask) != 0;
if (last_sample != sample)
fast_forward = false;
}
if (fast_forward) {
// Fast forward: This involves zooming out to higher
// levels of the mip map searching for changes, then
// zooming in on them to find the point where the edge
// begins.
// Slide right and zoom out at the beginnings of mip-map
// blocks until we encounter a change
while (1) {
const int level_scale_power =
(level + 1) * MipMapScalePower;
const uint64_t offset =
index >> level_scale_power;
// Check if we reached the last block at this
// level, or if there was a change in this block
if (offset >= _mip_map[level].length ||
(get_subsample(level, offset) &
sig_mask))
break;
if ((offset & ~(~0 << MipMapScalePower)) == 0) {
// If we are now at the beginning of a
// higher level mip-map block ascend one
// level
if (level + 1 >= ScaleStepCount ||
!_mip_map[level + 1].data)
break;
level++;
} else {
// Slide right to the beginning of the
// next mip map block
index = pow2_ceil(index + 1,
level_scale_power);
}
}
// Zoom in, and slide right until we encounter a change,
// and repeat until we reach min_level
while (1) {
assert(_mip_map[level].data);
const int level_scale_power =
(level + 1) * MipMapScalePower;
const uint64_t offset =
index >> level_scale_power;
// Check if we reached the last block at this
// level, or if there was a change in this block
if (offset >= _mip_map[level].length ||
(get_subsample(level, offset) &
sig_mask)) {
// Zoom in unless we reached the minimum
// zoom
if (level == min_level)
break;
level--;
} else {
// Slide right to the beginning of the
// next mip map block
index = pow2_ceil(index + 1,
level_scale_power);
}
}
// If individual samples within the limit of resolution,
// do a linear search for the next transition within the
// block
if (min_length < MipMapScaleFactor) {
for (; index < end; index++) {
const bool sample = (get_sample(index) &
sig_mask) != 0;
if (sample != last_sample)
break;
}
}
}
if (index >= end)
return false;
else
return true;
}
bool LogicSnapshot::get_pre_edge(
uint64_t &index, bool last_sample,
float min_length, int sig_index)
{
unsigned int level;
bool fast_forward;
assert(index < get_sample_count());
const unsigned int min_level = max((int)floorf(logf(min_length) /
LogMipMapScaleFactor) - 1, 0);
const uint64_t sig_mask = 1ULL << sig_index;
//----- Continue to search -----//
level = min_level;
// We cannot fast-forward if there is no mip-map data at
// at the minimum level.
fast_forward = (_mip_map[level].data != NULL);
if (min_length < MipMapScaleFactor)
{
// Search individual samples down to the ending of
// the previous first level mip map block
uint64_t final_index;
if (index < (1 << MipMapScalePower))
final_index = 0;
else
final_index = pow2_ceil(index + 1, MipMapScalePower) - (1 << MipMapScalePower) - 1;
for (; index >= final_index; index--)
{
const bool sample =
(get_sample(index) & sig_mask) != 0;
// If there was a change we cannot fast forward
if (sample != last_sample) {
fast_forward = false;
index++;
return true;
}
if (index == 0)
return false;
}
}
else
{
// If resolution is less than a mip map block,
// round up to the beginning of the mip-map block
// for this level of detail
const int min_level_scale_power =
(level + 1) * MipMapScalePower;
if (index < (1 << min_level_scale_power))
index = 0;
else
index = pow2_ceil(index, min_level_scale_power) - (1 << min_level_scale_power) - 1;
// We can fast forward only if there was no change
const bool sample =
(get_sample(index) & sig_mask) != 0;
if (last_sample != sample) {
fast_forward = false;
index++;
return true;
}
if (index == 0)
return false;
}
if (fast_forward) {
// Fast forward: This involves zooming out to higher
// levels of the mip map searching for changes, then
// zooming in on them to find the point where the edge
// begins.
// Slide left and zoom out at the endings of mip-map
// blocks until we encounter a change
while (1) {
const int level_scale_power =
(level + 1) * MipMapScalePower;
const uint64_t offset =
index >> level_scale_power;
// Check if we reached the first block at this
// level, or if there was a change in this block
if (offset == 0 ||
(get_subsample(level, offset) &
sig_mask))
break;
if (((offset+1) & ~(~0 << MipMapScalePower)) == 0) {
// If we are now at the ending of a
// higher level mip-map block ascend one
// level
if (level + 1 >= ScaleStepCount ||
!_mip_map[level + 1].data)
break;
level++;
} else {
// Slide left to the beginning of the
// previous mip map block
index = pow2_ceil(index + 1,
level_scale_power) - (1 << level_scale_power) - 1;
}
}
// Zoom in, and slide left until we encounter a change,
// and repeat until we reach min_level
while (1) {
assert(_mip_map[level].data);
const int level_scale_power =
(level + 1) * MipMapScalePower;
const uint64_t offset =
index >> level_scale_power;
// Check if we reached the first block at this
// level, or if there was a change in this block
if (offset == 0 ||
(get_subsample(level, offset) &
sig_mask)) {
// Zoom in unless we reached the minimum
// zoom
if (level == min_level)
break;
level--;
} else {
// Slide left to the ending of the
// previous mip map block
index = pow2_ceil(index + 1,
level_scale_power) - (1 << level_scale_power) - 1;
}
}
// If individual samples within the limit of resolution,
// do a linear search for the next transition within the
// block
if (min_length < MipMapScaleFactor) {
for (; index >= 0; index--) {
const bool sample = (get_sample(index) &
sig_mask) != 0;
if (sample != last_sample) {
index++;
return true;
}
if (index == 0)
return false;
}
}
}
return false;
}
uint64_t LogicSnapshot::get_subsample(int level, uint64_t offset) const
{
assert(level >= 0);
assert(_mip_map[level].data);
return *(uint64_t*)((uint8_t*)_mip_map[level].data +
_unit_size * offset);
}
uint64_t LogicSnapshot::pow2_ceil(uint64_t x, unsigned int power)
{
const uint64_t p = 1 << power;
return (x + p - 1) / p * p;
}
} // namespace data
} // namespace pv