forked from Ivasoft/DSView
233 lines
7.4 KiB
C++
233 lines
7.4 KiB
C++
/*
|
|
* This file is part of the DSLogic-gui project.
|
|
* DSLogic-gui is based on PulseView.
|
|
*
|
|
* Copyright (C) 2013 DreamSourceLab <dreamsourcelab@dreamsourcelab.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
|
|
#include <extdef.h>
|
|
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
|
|
#include <algorithm>
|
|
|
|
#include <boost/foreach.hpp>
|
|
|
|
#include "dsosnapshot.h"
|
|
|
|
using namespace boost;
|
|
using namespace std;
|
|
|
|
namespace pv {
|
|
namespace data {
|
|
|
|
const int DsoSnapshot::EnvelopeScalePower = 4;
|
|
const int DsoSnapshot::EnvelopeScaleFactor = 1 << EnvelopeScalePower;
|
|
const float DsoSnapshot::LogEnvelopeScaleFactor =
|
|
logf(EnvelopeScaleFactor);
|
|
const uint64_t DsoSnapshot::EnvelopeDataUnit = 64*1024; // bytes
|
|
|
|
DsoSnapshot::DsoSnapshot(const sr_datafeed_dso &dso, uint64_t _total_sample_len, unsigned int channel_num) :
|
|
Snapshot(sizeof(uint16_t), _total_sample_len, channel_num)
|
|
{
|
|
lock_guard<recursive_mutex> lock(_mutex);
|
|
memset(_envelope_levels, 0, sizeof(_envelope_levels));
|
|
init(_total_sample_len * channel_num);
|
|
append_payload(dso);
|
|
}
|
|
|
|
DsoSnapshot::~DsoSnapshot()
|
|
{
|
|
lock_guard<recursive_mutex> lock(_mutex);
|
|
BOOST_FOREACH(Envelope &e, _envelope_levels[0])
|
|
free(e.samples);
|
|
}
|
|
|
|
void DsoSnapshot::append_payload(const sr_datafeed_dso &dso)
|
|
{
|
|
lock_guard<recursive_mutex> lock(_mutex);
|
|
append_data(dso.data, dso.num_samples);
|
|
|
|
// Generate the first mip-map from the data
|
|
append_payload_to_envelope_levels();
|
|
}
|
|
|
|
const uint16_t* DsoSnapshot::get_samples(
|
|
int64_t start_sample, int64_t end_sample) const
|
|
{
|
|
assert(start_sample >= 0);
|
|
assert(start_sample < (int64_t)get_sample_count());
|
|
assert(end_sample >= 0);
|
|
assert(end_sample < (int64_t)get_sample_count());
|
|
assert(start_sample <= end_sample);
|
|
|
|
lock_guard<recursive_mutex> lock(_mutex);
|
|
|
|
// uint16_t *const data = new uint16_t[end_sample - start_sample];
|
|
// memcpy(data, (uint16_t*)_data + start_sample, sizeof(uint16_t) *
|
|
// (end_sample - start_sample));
|
|
// return data;
|
|
return (uint16_t*)_data + start_sample;
|
|
}
|
|
|
|
void DsoSnapshot::get_envelope_section(EnvelopeSection &s,
|
|
uint64_t start, uint64_t end, float min_length, int probe_index) const
|
|
{
|
|
assert(end <= get_sample_count());
|
|
assert(start <= end);
|
|
assert(min_length > 0);
|
|
|
|
lock_guard<recursive_mutex> lock(_mutex);
|
|
|
|
const unsigned int min_level = max((int)floorf(logf(min_length) /
|
|
LogEnvelopeScaleFactor) - 1, 0);
|
|
const unsigned int scale_power = (min_level + 1) *
|
|
EnvelopeScalePower;
|
|
start >>= scale_power;
|
|
end >>= scale_power;
|
|
|
|
s.start = start << scale_power;
|
|
s.scale = 1 << scale_power;
|
|
s.length = end - start;
|
|
// s.samples = new EnvelopeSample[s.length];
|
|
// memcpy(s.samples, _envelope_levels[min_level].samples + start,
|
|
// s.length * sizeof(EnvelopeSample));
|
|
s.samples = _envelope_levels[probe_index][min_level].samples + start;
|
|
}
|
|
|
|
void DsoSnapshot::reallocate_envelope(Envelope &e)
|
|
{
|
|
const uint64_t new_data_length = ((e.length + EnvelopeDataUnit - 1) /
|
|
EnvelopeDataUnit) * EnvelopeDataUnit;
|
|
if (new_data_length > e.data_length)
|
|
{
|
|
e.data_length = new_data_length;
|
|
e.samples = (EnvelopeSample*)realloc(e.samples,
|
|
new_data_length * sizeof(EnvelopeSample));
|
|
}
|
|
}
|
|
|
|
void DsoSnapshot::append_payload_to_envelope_levels()
|
|
{
|
|
unsigned int i;
|
|
for (i = 0; i < _channel_num; i++) {
|
|
Envelope &e0 = _envelope_levels[i][0];
|
|
uint64_t prev_length;
|
|
EnvelopeSample *dest_ptr;
|
|
|
|
// Expand the data buffer to fit the new samples
|
|
prev_length = e0.length;
|
|
e0.length = get_sample_count() / EnvelopeScaleFactor;
|
|
|
|
// Break off if there are no new samples to compute
|
|
// if (e0.length == prev_length)
|
|
// return;
|
|
if (e0.length == 0)
|
|
return;
|
|
if (e0.length == prev_length)
|
|
prev_length = 0;
|
|
|
|
reallocate_envelope(e0);
|
|
|
|
dest_ptr = e0.samples + prev_length;
|
|
|
|
// Iterate through the samples to populate the first level mipmap
|
|
const uint16_t *const stop_src_ptr = (uint16_t*)_data +
|
|
e0.length * EnvelopeScaleFactor * _channel_num;
|
|
// for (const uint16_t *src_ptr = (uint16_t*)_data +
|
|
// prev_length * EnvelopeScaleFactor;
|
|
// src_ptr < end_src_ptr; src_ptr += EnvelopeScaleFactor)
|
|
// {
|
|
// const EnvelopeSample sub_sample = {
|
|
// *min_element(src_ptr, src_ptr + EnvelopeScaleFactor),
|
|
// *max_element(src_ptr, src_ptr + EnvelopeScaleFactor),
|
|
// };
|
|
|
|
// *dest_ptr++ = sub_sample;
|
|
// }
|
|
for (const uint16_t *src_ptr = (uint16_t*)_data +
|
|
prev_length * EnvelopeScaleFactor * _channel_num + i;
|
|
src_ptr < stop_src_ptr; src_ptr += EnvelopeScaleFactor * _channel_num)
|
|
{
|
|
const uint16_t * begin_src_ptr =
|
|
src_ptr;
|
|
const uint16_t *const end_src_ptr =
|
|
src_ptr + EnvelopeScaleFactor * _channel_num;
|
|
|
|
EnvelopeSample sub_sample;
|
|
sub_sample.min = *begin_src_ptr;
|
|
sub_sample.max = *begin_src_ptr;
|
|
begin_src_ptr += _channel_num;
|
|
while (begin_src_ptr < end_src_ptr)
|
|
{
|
|
sub_sample.min = min(sub_sample.min, *begin_src_ptr);
|
|
sub_sample.max = max(sub_sample.max, *begin_src_ptr);
|
|
begin_src_ptr += _channel_num;
|
|
}
|
|
|
|
*dest_ptr++ = sub_sample;
|
|
}
|
|
|
|
// Compute higher level mipmaps
|
|
for (unsigned int level = 1; level < ScaleStepCount; level++)
|
|
{
|
|
Envelope &e = _envelope_levels[i][level];
|
|
const Envelope &el = _envelope_levels[i][level-1];
|
|
|
|
// Expand the data buffer to fit the new samples
|
|
prev_length = e.length;
|
|
e.length = el.length / EnvelopeScaleFactor;
|
|
|
|
// Break off if there are no more samples to computed
|
|
// if (e.length == prev_length)
|
|
// break;
|
|
if (e.length == prev_length)
|
|
prev_length = 0;
|
|
|
|
reallocate_envelope(e);
|
|
|
|
// Subsample the level lower level
|
|
const EnvelopeSample *src_ptr =
|
|
el.samples + prev_length * EnvelopeScaleFactor;
|
|
const EnvelopeSample *const end_dest_ptr = e.samples + e.length;
|
|
for (dest_ptr = e.samples + prev_length;
|
|
dest_ptr < end_dest_ptr; dest_ptr++)
|
|
{
|
|
const EnvelopeSample *const end_src_ptr =
|
|
src_ptr + EnvelopeScaleFactor;
|
|
|
|
EnvelopeSample sub_sample = *src_ptr++;
|
|
while (src_ptr < end_src_ptr)
|
|
{
|
|
sub_sample.min = min(sub_sample.min, src_ptr->min);
|
|
sub_sample.max = max(sub_sample.max, src_ptr->max);
|
|
src_ptr++;
|
|
}
|
|
|
|
*dest_ptr = sub_sample;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace data
|
|
} // namespace pv
|